All tips and tricks of 000-552 exam are provided here

killexams.com is a reliable and dependable company that offers 000-552 examination questions along with 100% pass assurance. You have in order to practice 000-552 questions with regard to one day in order to score well inside the IBM InfoSphere Optim for Distributed Systems - V7.3.1 exam. Your own real task within 000-552 exam, actually starts with killexams.com 000-552 sample test this is the particular great and legitimate.

Exam Code: 000-552 Practice test 2022 by Killexams.com team
IBM InfoSphere Optim for Distributed Systems - V7.3.1
IBM Distributed test
Killexams : IBM Distributed test - BingNews https://killexams.com/pass4sure/exam-detail/000-552 Search results Killexams : IBM Distributed test - BingNews https://killexams.com/pass4sure/exam-detail/000-552 https://killexams.com/exam_list/IBM Killexams : IBM report shows cyberattacks growing fast in number, scale No result found, try new keyword!A new report out of IBM shows that when it comes to the rising threat of data breaches, it’s the consumer – not the company – fronting the price tag. Fri, 29 Jul 2022 22:30:00 -0500 text/html https://www.bizjournals.com/triad/news/2022/07/30/ibm-data-cyberattacks-growing-in-number-scale.html Killexams : IBM Annual Cost of Data Breach Report 2022: Record Costs Usually Passed On to Consumers, “Long Breach” Expenses Make Up Half of Total Damage

IBM’s annual Cost of Data Breach Report for 2022 is packed with revelations, and as usual none of them are good news. Headlining the report is the record-setting cost of data breaches, with the global average now at $4.35 million. The report also reveals that much of that expense comes with the data breach version of “long Covid,” expenses that are realized more than a year after the attack.

Most organizations (60%) are passing these added costs on to consumers in the form of higher prices. And while 83% of organizations now report experiencing at least one data breach, only a small minority are adopting zero trust strategies.

Security AI and automation greatly reduces expected damage

The IBM report draws on input from 550 global organizations surveyed about the period between March 2021 and March 2022, in partnership with the Ponemon Institute.

Though the average cost of a data breach is up, it is only by about 2.6%; the average in 2021 was $4.24 million. This represents a total climb of 13% since 2020, however, reflecting the general spike in cyber crime seen during the pandemic years.

Organizations are also increasingly not opting to absorb the cost of data breaches, with the majority (60%) compensating by raising consumer prices separate from any other recent increases due to inflation or supply chain issues. The report indicates that this may be an underreported upward influence on prices of consumer goods, as 83% of organizations now say that they have been breached at least once.

Brad Hong, Customer Success Manager for Horizon3.ai, sees a potential consumer backlash on the horizon once public awareness of this practice grows: “It’s already a breach of confidence to lose the confidential data of customers, and sure there’s bound to be an organization across those surveyed who genuinely did put in the effort to protect against and curb attacks, but for those who did nothing, those who, instead of creating a disaster recovery plan, just bought cyber insurance to cover the org’s operational losses, and those who simply didn’t care enough to heed the warnings, it’s the coup de grâce to then pass the cost of breaches to the same customers who are now the victims of a data breach. I’d be curious to know what percent of the 60% of organizations who increased the price of their products and services are using the extra revenue for a war chest or to actually reinforce their security—realistically, it’s most likely just being used to fill a gap in lost revenue for shareholders’ sake post-breach. Without government regulations outlining restrictions on passing cost of breach to consumer, at the least, not without the honest & measurable efforts of a corporation as their custodian, what accountability do we all have against that one executive who didn’t want to change his/her password?”

Breach costs also have an increasingly long tail, as nearly half now come over a year after the date of the attack. The largest of these are generally fines that are levied after an investigation, and decisions or settlements in class action lawsuits. While the popular new “double extortion” approach of ransomware attacks can drive long-term costs in this way, the study finds that companies paying ransom demands to settle the problem quickly aren’t necessarily seeing a large amount of overall savings: their average breach cost drops by just $610,000.

Sanjay Raja, VP of Product with Gurucul, expands on how knock-on data breach damage can continue for years: “The follow-up attack effect, as described, is a significant problem as the playbooks and solutions provided to security operations teams are overly broad and lack the necessary context and response actions for proper remediation. For example, shutting down a user or application or adding a firewall block rule or quarantining a network segment to negate an attack is not a sustainable remediation step to protect an organization on an ongoing basis. It starts with a proper threat detection, investigation and response solution. Current SIEMs and XDR solutions lack the variety of data, telemetry and combined analytics to not only identify an attack campaign and even detect variants on previously successful attacks, but also provide the necessary context, accuracy and validation of the attack to build both a precise and complete response that can be trusted. This is an even greater challenge when current solutions cannot handle complex hybrid multi-cloud architectures leading to significant blind spots and false positives at the very start of the security analyst journey.”

Rising cost of data breach not necessarily prompting dramatic security action

In spite of over four out of five organizations now having experienced some sort of data breach, only slightly over 20% of critical infrastructure companies have moved to zero trust strategies to secure their networks. Cloud security is also lagging as well, with a little under half (43%) of all respondents saying that their security practices in this area are either “early stage” or do not yet exist.

Those that have onboarded security automation and AI elements are the only group seeing massive savings: their average cost of data breach is $3.05 million lower. This particular study does not track average ransom demands, but refers to Sophos research that puts the most recent number at $812,000 globally.

The study also notes serious problems with incident response plans, especially troubling in an environment in which the average ransomware attack is now carried out in four days or less and the “time to ransom” has dropped to a matter of hours in some cases. 37% of respondents say that they do not test their incident response plans regularly. 62% say that they are understaffed to meet their cybersecurity needs, and these organizations tend to suffer over half a million more dollars in damages when they are breached.

Of course, cost of data breaches is not distributed evenly by geography or by industry type. Some are taking much bigger hits than others, reflecting trends established in prior reports. The health care industry is now absorbing a little over $10 million in damage per breach, with the average cost of data breach rising by $1 million from 2021. And companies in the United States face greater data breach costs than their counterparts around the world, at over $8 million per incident.

Shawn Surber, VP of Solutions Architecture and Strategy with Tanium, provides some insight into the unique struggles that the health care industry faces in implementing effective cybersecurity: “Healthcare continues to suffer the greatest cost of breaches but has among the lowest spend on cybersecurity of any industry, despite being deemed ‘critical infrastructure.’ The increased vulnerability of healthcare organizations to cyber threats can be traced to outdated IT systems, the lack of robust security controls, and insufficient IT staff, while valuable medical and health data— and the need to pay ransoms quickly to maintain access to that data— make healthcare targets popular and relatively easy to breach. Unlike other industries that can migrate data and sunset old systems, limited IT and security budgets at healthcare orgs make migration difficult and potentially expensive, particularly when an older system provides a small but unique function or houses data necessary for compliance or research, but still doesn’t make the cut to transition to a newer system. Hackers know these weaknesses and exploit them. Additionally, healthcare orgs haven’t sufficiently updated their security strategies and the tools that manufacturers, IT software vendors, and the FDA have made haven’t been robust enough to thwart the more sophisticated techniques of threat actors.”

Familiar incident types also lead the list of the causes of data breaches: compromised credentials (19%), followed by phishing (16%). Breaches initiated by these methods also tended to be a little more costly, at an average of $4.91 million per incident.

Global average cost of #databreach is now $4.35M, up 13% since 2020. Much of that are realized more than a year after the attack, and 60% of organizations are passing the costs on to consumers in the form of higher prices. #cybersecurity #respectdataClick to Tweet

Cutting the cost of data breach

Though the numbers are never as neat and clean as averages would indicate, it would appear that the cost of data breaches is cut dramatically for companies that implement solid automated “deep learning” cybersecurity tools, zero trust systems and regularly tested incident response plans. Mature cloud security programs are also a substantial cost saver.

Mon, 01 Aug 2022 10:00:00 -0500 Scott Ikeda en-US text/html https://www.cpomagazine.com/cyber-security/ibm-annual-cost-of-data-breach-report-2022-record-costs-usually-passed-on-to-consumers-long-breach-expenses-make-up-half-of-total-damage/
Killexams : IBM Research Open-Sources Deep Search Tools

(Laborant/Shutterstock)

IBM Research’s Deep Search product uses natural language processing (NLP) to “ingest and analyze massive amounts of data—structured and unstructured.” Over the years, Deep Search has seen a wide range of scientific uses, from Covid-19 research to molecular synthesis. Now, IBM Research is streamlining the scientific applications of Deep Search by open-sourcing part of the product through the release of Deep Search for Scientific Discovery (DS4SD).

DS4SD includes specific segments of Deep Search aimed at document conversion and processing. First is the Deep Search Experience, a document conversion service that includes a drag-and-drop interface and interactive conversion to allow for quality checks. The second element of DS4SD is the Deep Search Toolkit, a Python package that allows users to “programmatically upload and convert documents in bulk” by pointing the toolkit to a folder whose contents will then be uploaded and converted from PDFs into “easily decipherable” JSON files. The toolkit integrates with existing services, and IBM Research is welcoming contributions to the open-source toolkit from the developer community.

IBM Research paints DS4SD as a boon for handling unstructured data (data not contained in a structured database). This data, IBM Research said, holds a “lot of value” for scientific research; by way of example, they cited IBM’s own Project Photoresist, which in 2020 used Deep Search to comb through more than 6,000 patents, documents, and material data sheets in the hunt for a new molecule. IBM Research says that Deep Search offers up to a 1,000× data ingestion speedup and up to a 100× data screening speedup compared to manual alternatives.

The launch of DS4SD follows the launch of GT4SD—IBM Research’s Generative Toolkit for Scientific Discovery—in March of this year. GT4SD is an open-source library to accelerate hypothesis generation for scientific discovery. Together, DS4SD and GT4SD constitute the first steps in what IBM Research is calling its Open Science Hub for Accelerated Discovery. IBM Research says more is yet to come, with “new capabilities, such as AI models and high quality data sources” to be made available through DS4SD in the future. Deep Search has also added “over 364 million” public documents (like patents and research papers) for users to leverage in their research—a big change from the previous “bring your own data” nature of the tool.

The Deep Search Toolkit is accessible here.

Related Items

MIT-IBM Watson AI Lab Tackles Power Grid Failures with AI

IBM Acquires Observability Platform Databand.ai

A Nutrition Label for AI

Mon, 18 Jul 2022 02:37:00 -0500 text/html https://www.datanami.com/2022/07/18/ibm-research-open-sources-deep-search-tools/
Killexams : What is cloud computing? Everything you need to know now

Cloud computing is an abstraction of compute, storage, and network infrastructure assembled as a platform on which applications and systems can be deployed quickly and scaled on the fly. Crucial to cloud computing is self-service: Users can simply fill in a web form and get up and running.

The vast majority of cloud customers consume public cloud computing services over the internet, which are hosted in large, remote data centers maintained by cloud providers. The most common type of cloud computing, SaaS (software as service), delivers prebuilt applications to the browsers of customers who pay per seat or by usage, exemplified by such popular apps as Salesforce, Google Docs, or Microsoft Teams. Next in line is IaaS (infrastructure as a service), which offers vast, virtualized compute, storage, and network infrastructure upon which customers build their own applications, often with the aid of providers’ API-accessible services.

When people casually say “the cloud,” they most often mean the big IaaS providers: AWS (Amazon Web Services), Google Cloud, or Microsoft Azure. All three have become gargantuan ecosystems of services that go way beyond infrastructure: developer tools, serverless computing, machine learning services and APIs, data warehouses, and thousands of other services. With both SaaS and IaaS, a key benefit is agility. Customers gain new capabilities almost instantly without capital investment in hardware or software—and they can instantly scale the cloud resources they consume up or down as needed.

Cloud computing definitions for each type

Way back in 2011, NIST posted a PDF that divided cloud computing into three “service models”—SaaS, IaaS, and PaaS (platform as a service)—the latter a controlled environment within which customers develop and run applications. These three categories have largely stood the test of time, although most PaaS solutions now make themselves available as services within IaaS ecosystems rather than presenting themselves as their own clouds.

Two evolutionary trends stand out since NIST’s threefold definition. One is the long and growing list of subcategories within SaaS, IaaS, and PaaS, some of which blur the lines between categories. The other is the explosion of API-accessible services available in the cloud, particularly within IaaS ecosystems. The cloud has become a crucible of innovation where many emerging technologies appear first as services, a big attraction for business customers who understand the potential competitive advantages of early adoption.

SaaS (software as a service) definition

This type of cloud computing delivers applications over the internet, typically with a browser-based user interface. Today, the vast majority of software companies offer their wares via SaaS—if not exclusively, then at least as an option.